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[I]   Radiation belt electrons and chorus waves are an outstanding instance of the important 
role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus 
waves are particularly complex, often occurring with large amplitude, narrowband but 
drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt 
electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable 
results. It is known that coherent interactions with monochromatic waves can cause 
particle diffusion, as well as radically different phase bunching and phase trapping 
behavior. Here the two formulations of diffusion, while conceptually different, are shown 
to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is 
further shown that suitably averaging the monochromatic diffusion coefficients over 
frequency and wave normal angle parameters reproduces the full broadband quasi-linear 
results. This may account for the rather surprising success of quasi-linear theory in 
modeling radiation belt electrons undergoing diffusion by chorus waves. 

Citation:   Albert, J. M. (2010), Diffusion by one wave and by many waves, J. Geophys. Res.. 115, A00F05, 
doi:10.1029/2009JA014732. 

1.    Introduction 

[2] Cyclotron resonant wave-particle interactions play a 
key role in both the acceleration and loss of radiation belt 
electrons. Chorus waves, in particular, are believed to be 
key to both the energization and loss of energetic electrons 
in the outer zone [Chen et al, 2007; Home, 2007; Bortnik 
and Thome, 2007]. Chorus waves propagate in the whis- 
tler mode and are observed, with sufficient time resolution, 
to be coherent, with well-defined frequencies that drift 
during their growth to large amplitude [Santolik et al, 2003; 
Breneman et al, 2009]. The wave growth is intimately 
connected to the linear [Li et al, 2008, 2009] and nonlinear 
[e.g., Nunn, 1974; Katoh and Omura, 2007] behavior of 
resonant electrons with energy in the keV range. MeV range 
electrons are also subject to nonlinear behavior induced by 
the developed waves, but their motion can be considered 
"parasitic," i.e., not feeding back to the development of the 
waves. 

[3] Coherent cyclotron resonant interactions of test elec- 
trons with individual whistler mode waves has been treated 
by many authors, and yields three distinctly different kinds 
of particle behavior, namely diffusion, phase bunching, and 
phase trapping. Both phase bunching (without trapping) 
and phase trapping are favored by large amplitude waves 
and low inhomogeneity of the background magnetic field; a 
quantitative criterion has been developed by many authors 
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[e.g., Inan et al, 1978; Albert, 1993; Omura et al, 2008]. 
The relevant regime also depends strongly on the particle 
energy and pitch angle, so all three types of behavior may 
occur under the same conditions. Albert [1993, 2000, 
hereafter Papers I and II, respectively] derived analytical 
expressions for the changes in pitch angle and energy for all 
three types of motion, using a Hamiltonian formulation, 
though frequency drift was neglected. Similar considera- 
tions also apply to large amplitude electromagnetic ion 
cyclotron waves [Albert and Bortnik, 2009]. In the diffusive 
regime, a key quantity is the effective interaction time, 
which is controlled by how long (or far) the particle has to 
move in the varying background field before the resonance 
condition is violated. 

[4] The large-scale effects of chorus waves on the radia- 
tion belts have also been modeled using quasi-linear theory 
in one, two, and three dimensions (see Albert [2009] for a 
brief review). This framework assumes a continuum of 
uncorrelated, small amplitude waves, with wide distribu- 
tions in frequency and wave normal angle, in a constant 
background magnetic field. Here, the diffusion can be 
considered limited by the relative parallel velocity of the 
particle and the group velocity of a nearly resonant wave 
packet [Albert, 2001]. The resulting local pitch angle and 
energy diffusion coefficients are computed locally and then 
bounce averaged, which finally introduces variation of the 
background magnetic field. Recently, the expressions for 
broadband quasi-linear diffusion coefficients were expressed 
in a relatively transparent form [Albert, 2005], which turned 
out to be convenient for isolating single waves within the 
broad frequency and wave normal angle distributions. Such 
single waves, suitably chosen, are perhaps surprisingly well 
able to represent the entire distributions, leading to accurate 
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approximations [Albert, 2007, 2008]. These may be con- 
sidered a generalization of the parallel propagation approx- 
imation [Summers et al., 2007]. 

[s] Thus diffusion emerges from both quasi-linear and 
nonlinear treatments, but the underlying pictures are quite 
different. Since the quasi-linear diffusion approach seems to 
model the actual particle behavior fairly well [Albert, 2009], 
it is of great interest to relate the two sets of diffusion 
coefficients. This was done by Albert [2001], working with 
quasi-linear expressions for whistler mode waves in the 
high-density, low-frequency limit [Lyons et al., 1972], 
which invoked considerable simplifications of both the 
whistler mode dispersion relation and the resonance condi- 
tion. It was concluded that the narrowband limit of the 
quasi-linear pitch angle diffusion coefficient was approxi- 
mately equal to the Hamiltonian-derived pitch angle diffu- 
sion coefficient for monochromatic waves. Here, the 
comparison of the two analytical frameworks is recon- 
sidered in much greater generality, using the full description 
of stationary cold plasma waves. It is shown that the nar- 
rowband limit of bounce-averaged quasi-linear theory and 
the diffusive regime of the Hamiltonian analysis yield 
exactly the same pitch angle, energy, and cross diffusion 
coefficients. Furthermore, averaging the monochromatic 
results over distributions of frequency and wave normal 
angle, which statistically models a sequence of resonant 
interactions with individual waves, recovers exactly the full 
broadband quasi-linear diffusion coefficients. This seems a 
meaningful step toward reconciling the behavior expected 
from coherent dynamics, in the diffusion regime, with the 
apparent utility of bounce-averaged quasi-linear theory for 
modeling of radiation belt electrons. 

[6] Any possible coupling between changes in aQ and p 
with changes in L will be ignored. This is usually justified 
by the wide separation of time scales associated with the 
first two adiabatic invariants compared to that of the third, 
i.e., the drift period compared to the cyclotron and bounce 
periods. Such coupling, which would lead to cross diffusion 
terms involving D,XoL and DpL, has only been considered 
occasionally, usually in the context of so-called drift shell 
splitting [Roederer, 1970; Schulz and Lanzerotti, 1974], 
although Brizard and Chan [2004] recently formulated the 
"full" matrix of diffusion coefficients generated by an ar- 
bitrary wave spectrum in axisymmetric geometry. The 
resulting diffusion equation could be solved numerically by 
an algorithm based on stochastic differential equations [Tao 
et al., 2008] or the layer method described by Tao et al. 
[2009]. 

[7] Section 2 exhibits the local quasi-linear diffusion 
coefficients and their monochromatic limit, following Albert 
[2007], and carries out the bounce average following Albert 
[2001], leading to closed form expressions with no re- 
maining integrals. Section 3 presents the diffusion coeffi- 
cients of Albert [1993, 2000] resulting from coherent 
interactions with a single, monochromatic wave, which are 
found to be identical to the final results of section 2. Section 
4 then considers the coherent diffusion coefficients suitably 
averaged over wave frequency and wave normal angle 
parameters, reproducing the full quasi-linear expressions. 
Section 5 presents some numerical examples of diffusion 
coefficients for a model of nightside chorus waves, calcu- 

lated from each approach, and explicitly demonstrates their 
equivalence. This is followed by a brief discussion. 

2.    Quasi-Linear Diffusion Coefficients 

[s] The condition for gyroresonance between a particle 
and a wave is 

w-*||V|j = n»,   S2„ = snilj-y, (1) 

where n is an integer, s = ±\ is the sign of the charge of the 
particle, Slc = \q\ Blmc is its local nonrelativistic gyrofre- 
quency, and 7 is its relativistic factor. The local pitch angle 
of the particle is a, the index of refraction is p = kcluj, and 
the wave normal angle is 8. The underlying mechanism of 
quasi-linear diffusion can be thought of as involving con- 
tinuous resonance: even as the particle diffuses in a and 7, it 
is always able to find an instantaneously resonant wave 
within the u> and 0 distributions. 

[9] Albert [2001] considered whistler waves, using ex- 
pressions based on the approximations uj/Qe <g 1 < uipjfll 
[Lyons et al., 1972; Lyons, 1974b], but here any cold plasma 
mode is considered, without any such approximations. 

2.1.   Local Expressions 
[10] The local diffusion coefficients in a spectrum of 

waves were given by Lyons [1974a, 1974b], as derived from 
the Vlasov equation [Kennel and Engelmann, 1966; Lerche, 
1968], although it can also be obtained by considering 
motion of a single particle acted on by single wave, for an 
interaction time related to the wave packet bandwidth [e.g., 
Albert, 2001]. In either case, the spatial variation of the 
background magnetic field and all other parameters is ig- 
nored for the local calculation, and accounted for later by 
bounce averaging. 

[11] The derivation is fairly involved (see also the pre- 
sentations by Walker [1993] and Swanson [1989]), but the 
results for pitch angle a and momentum p can be expressed 
as 

^-Ef/s^-*!-*) 
x«r 

(2TT) 

2|Bk|
2|«,,|2(-«n2o + «./w)2 

D"„ 

v    iT- 

p sin a cos a 

p- cos- a 

D" pp 

•sin2Q + !2B/w    i?„, (2) 

D,„v has dimensions of Mt, because of the explicit division 
byp2. Bk is the Fourier transform of the wave magnetic field 
taken over the plasma volume V (which is effectively infi- 
nite), and |$„| , as given by equation (9) of Lyons [1974b], 
is the result of resonance averaging the geometric details of 
the particle motion in the electromagnetic field of an oblique 
plane wave. The ratios of the diffusion coefficients were 
interpreted by Kennel and Engelmann [1966] in terms of 
single-wave characteristics of a quasi-linear diffusion op- 
erator, and were further discussed by Lvons [1974a] and 
Summers et al. [1998]. 

[12] The expressions get more involved after transforming 
the integration variables from (kL, fci) to (w, 9), and mod- 
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eling |Bk|2/F as a function of (OJ, 9), which brings in nor- 
malization integrals. As expressed by Albert [2005], and 
similarly by Glauert and Home [2005], the resulting form 
of the diffusion coefficients can be written as the sum over n 
of terms Dn given by 

«L = 
VcBl 

«• 'jf stn&/0A„G,G2, (3) 

with 

A„=  = 
•K secfl    , (-sin2a + n„/u) 

:* 

G, = 

G2 = 

2|V|,/c|3  - |l - (aw/s*,,),/*., 
ncB

2{u) 

Qdff sinffgu{0)T' 

T  =M2 (4, 

[13] The refractive index /i is a known function of (ui, 9) 
for the given cold plasma wave mode [e.g., Stix, 1962]. 
B2^) describes the frequency distribution of wave power, 
and is nonzero only between lower and upper cutoffs, u^c < 
UJ < uiuc- Similarly, the distribution of wave power with 
wave normal angle 9 is described by g^(9), which is nonzero 
only for (9mjn < 0 < #max. Both B2^) and gu,(tan9) are usually 
modeled as truncated Gaussians, peaked at um and 9m, 
respectively. The quantities Gx and G2 are explicitly nor- 
malized versions of 52(u>) and gu(9), and are discussed 
further in Appendix A. 

2.2.   Narrowband Limit 

[H] As shown by Albert [2007, 2008], the integral in 
equation (3) may be approximated as a weighted average, 
which becomes exact as gjjf) becomes narrowly peaked. In 
that limit, 

D"   = 
(lc B2

mw A„ G, 

i2 B
2
    r   ' 

(5) 

evaluated at some resonant pair (us, (?) within the specified 
distributions. For the purposes of Albert [2007, 2008], uiLC 

and tjJuc were used to find 9 ranges containing resonances, 
and Efn„ was approximated using representative values from 
within these ranges. In section 2.3, equation (5) is evaluated 
at 8„„ with u taken to be the corresponding resonant value at 
each location. 

2.3.    Bounce Averaging 

[is] The bounce-averaged diffusion coefficient for the 
equatorial pitch angle, Q0, is given by the sum over n of 

CT 
= -/-( do 

D".„ (6) 

where z is distance along the magnetic field line (and is 
easily converted to latitude). In equation (3), 52(u>) is 
evaluated at the resonant frequency, which depends on both 

9 and z. As the 9 distribution is narrowed, *jKi becomes a 
well-defined function of z. And as the w distribution is 
narrowed, lf(uj) approaches a <5 function of u>. Assuming 9m 

and UJ,„ are compatible with resonance at some location zm, 
the bounce average and Gx combine to give 

fdz 
/ — G\{ujm(zJ„)) •• 

J   V| 
nc6(wTO(r) - uO 

in*" 
(7) 

\duj/dz\ 

The full wave intensity, 5wave, is now considered to be 
concentrated at the single pair (9m, ujm). 

[i6] The derivative of w is evaluated using the resonance 
condition, and it is important to note that k\\ is a function of 
both z and u), as specified by the dispersion relation. 
Therefore implicit differentiation of the resonance condition 
gives 

)"'I('. + «.)• (8) 

[n] The factors of (AJT)/\duj/dz\ containing partial deri- 
vatives combine and simplify: 

1   du> 

~ v   dk~, 
1 + I   - Vll du. 

k\v 
(9) 

Putting everything together gives 

D" 
B2       Jil2   <J>2 
*^wavc n «,, 

2Th    B
2 

x I - sin 

|v|||v272 fi2 B cos2 n0 

2   a a 
•(Vii + n.) 

(10) 

where Beq and a0 are equatorial values but all other quantities 
are evaluated at the resonance location. This is the mono- 
chromatic limit of the bounce-averaged, broadband quasi- 
linear diffusion coefficient for each n. 

[is] The bounce-averaged coefficients D"oP and Efpp are 
derived similarly, and in the monochromatic limit are related 
to D^ by 

D" p sin ao cos Qo    B IT 
PI< 

£>!U     -sin2ft+ft,,/wV   D"m 

 'JfK 

Dr., 
(ii) 

for each n. Albert [2004] discussed the role of these ratios in 
enforcing the condition £>„„„„ Dpp > D2

aP. 

3.    Coherent Interactions 

[19] A quite different scenario is that of a particle inter- 
acting with a single wave in a spatially varying magnetic 
field, so that the resonance condition of equation (1) is only 
satisfied at discrete, isolated locations through which the 
particle passes. As mentioned, analytical estimates of the 
resulting particle motion were obtained in Papers I and II. 
For large amplitude waves and small background inhomo- 
geneity, nonlinear behavior (phase bunching and phase 
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trapping) can occur, but here the opposite limit is consid- 
ered, which leads to random walks, or diffusion. 

[20] Papers I and II write out the full equations of motion 
in Hamiltonian form, transform to gyroresonance variables, 
expand to first order in BwmJB, and appropriately average 
away nonresonant terms. For n t 0, this leads to two con- 
stants of motion which can be used to reduce the number of 
variables to a single action-angle pair, (/, Q. To lowest order, 
/ is proportional to the familiar first adiadatic invariant, and 
£ is the usual wave-particle phase which is stationary at 
resonance. The evolution equations for / and £ can De 

expressed in terms of a reduced Hamiltonian, K = K0(I, z) + 
Ki(I, z) sin£, with z playing the role of time. The adiabatic 
motion is described by K0, while K\ captures the effects of 
the resonant wave. For n = 0, a similar treatment yields a 
reduced Hamiltonian M = M0(Y, z) + M|(T, z) sin£, where 
T = 72. The reduced Hamiltonians can be used to derive 
analytic approximations to the resonant changes in the adi- 
abatic invariants / or T. An "inhomogeneity parameter" R, 
proportional to (dB/dzyB^^^, delineates diffusion from the 
nonlinear regimes involving phase bunching and/or phase 
trapping. Here we only consider the case \R\ 3> 1, which 
indicates diffusion. 

3.1.   Cyclotron Resonance 
[21] At an isolated resonance n •£ 0. according to Papers I 

and II, 

(M)2=K'wikdrrs2(^+<)-     (,2) 

Again, z is distance along the field line, and 07 is the sign of 
d2 KcJBzdl at resonance. Averaging over £res, which depends 
on the gyrophase and is randomized between bounces, 
yields 1/2. Papers I and II also give the perturbation Ham- 
iltonian K\ in terms of a,„ which describes the wave field 
components. The relation between Ku am and $>„ noted by 
Albert [2001] holds for general cold plasma waves 

K  =• 
n2 v2   H2 B2 

c      wave xJ. * 
4  (p]:/mc)2     S   v» J2    B2   -• 

The Hamiltonian equation of motion for £ yields 

(13) 

&K0     d (di\       c2    d . 

where u> is the constant frequency of the single wave and 
can be omitted in the z derivative. 

[22] Diffusion coefficients are constructed from 

I   "o""'   '"""   "J        2rA    )\dl ) ' 81 dl' 

where ( ) denotes the average over £rcs. From Paper II, 

dcto _ — sin2 <\+Q„/ui Beq m2tr 7      dp _ np-c2 7 

dl sin a0 cos <*0     B    p2    sn'   dl        p    sn 

115) 

(16) 

(16) into equation (15) yields the first major result of this 
paper: the coherent interaction versions of I>"0„0, D",aP, and 
DpP work out to be exactly the same as in equations (10) and 
(11) for the narrowband limit of the bounce-averaged quasi- 
linear expressions. 

3.2.   Landau Resonance 

[23] For the special case n = 0, Paper II gives 

2TT 
(6r)2=M2 

d2M0/dzdtCOS^ + 'Tr4 (17) 

and cr-f is the sign of d^Mo/dzdY at resonance. Here a0 is 
just a„ with n = 0, but now 

M2 =alp2cos2e = 4cos26-^^-^-^2. (18) 

The Hamiltonian equation of motion for £ yields 

d2M0     d (d(,\       -2 

dzdT 
d (d£\       c2    d . 

(19) 

where again u> can be omitted in the z derivative. 
[24] The diffusion coefficients are now 

0  ^ ((6T)2) (dap 

2rh     \dX 

and so on. Using 

dao 
dr ^-^ip* 

2c2       dp      m:c2 

dr = ~2p~ 

(20) 

(21) 

from Paper II, the resulting coherent interaction expressions 
for A"vV A"J°. and Dpp° again agree exactly with equations 
(10) and (11) from the narrowband limit of bounce-averaged 
quasi-linear theory. 

4.    Average Over Wave Distributions 

[25] It has just been shown that the monochromatic limit 
of bounce-averaged, broadband quasi-linear theory is well 
behaved, and reduces to the results of a Hamiltonian anal- 
ysis of a resonant interaction with a single wave (in the 
diffusive regime). Conversely, pitch angle diffusion by a 
single, coherent wave can be expressed in terms of the 
quantities defined for quasi-linear diffusion 

D"     =• 
ncB

2 

B2 •T(£) i/£>**»—> <=> 
for either n ± 0 or n = 0. We now consider the result of many 
coherent interactions with individual waves all with ampli- 
tude BWivc but with frequency and wavenormal angle sta- 
tistically distributed according to B2(J) and gjfi). 

[26] The appropriate average is 

/DklBk|Vk 
(23) 

The corresponding ratio dp!daQ is closely related to the ra- 
tios in equation (11). Substituting equations (12>—(14) and 

where Dk refers to the single-wave equation (22).  The 
denominator of (23) is just Bl,3vc. Converting from d\ to 
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Figure 1. Local quasi-linear pitch angle diffusion coeffi- 
cient for 1 MeV electrons interacting with a broadband spec- 
trum of chorus waves at L = 4.5 at different latitudes. At the 
equator, the spectrum is peaked at 8m - 0, wm/f2<. = 0.35. 
Only the lowest harmonic (n = -1) term is shown. 

du)dO in the numerator, using the results of Appendix A, 
gives 

(D"     ) 
-/ 

duid8Dk • 
S2M sin 6gU0)T (24) 

(25) 

• jB2{J)dJ jdff sinffgUS1)^' 

Then, schematically, 

I duj I d8 I dz <5(u>rcs(r) - un) 

=>     / dz j dO I duj 6{ui - u>m) =>   f d: I d6. 

which yields 

This is the second major result of this paper: the coherent 
interaction diffusion coefficient, suitably averaged, is iden- 
tical to the full quasi-linear result given by equation (6). The 
analogous relations hold for {£>"„,,) and (DpP). 

5.    Numerical Example 

[27] For illustration, we consider the model of Li et al. 
[2007] for nightside chorus during a magnetic storm main 
phase, at L = 4.5 with uJpJQ.e = 3.8 at the equator. They 
computed quasi-linear diffusion coefficients for waves with 
Swavc = 50 pT, with the equatorial frequency distribution 
specified by uim = 0.35 ile, 6ui = 0.15 Q„ ujLC = 0.05Qe, and 
uiuc - 0.65 Qc,. The waves are considered present only for 
latitude A < 15°. In that work the waves were all taken to 
propagate with 8 = 0, but here, following Horne et al. 

[2005] and Albert [2008], the wave normal angle distribu- 
tion is modeled with 8m = 0,66 = 30°, 6mm = 0, and 8max = 45°. 

[28] Figure 1 shows the local quasi-linear pitch angle 
diffusion coefficients for 1 MeV electrons for several values 
of latitude, calculated from equation (3). Only contributions 
by n = -1 are shown. For each wave normal angle in the 
distribution, the resonant frequency is found; if both lie 
within the model distributions, a contribution is made to the 
diffusion coefficient integrals. The 'usual' quasi-linear 
results [e.g., Horne et al., 2005; Albert, 2005] consist of just 
such calculations, converted from a to a0 and bounce 
averaged, as in equation (6), and summed over n. 

[29] Figure 2 shows equatorial pitch angle diffusion 
coefficients for individual waves with 8 = 0m = 0 and var- 
ious frequencies between UJLC and u>uc, calculated according 
to the coherent formulation, equations (12) and (15), with 
n = -1. Related calculations were previously presented by 
Albert [1993, 2000, 2002] and Albert and Bortnik [2009]. 
As mentioned in section 3, integration along the field line is 
inherent in the formulation. The curve for 6 = 6m,u = u>m, is 
emphasized by the dashed curve. Figure 3 is similar, but 
shows the results holding u = um fixed and varying 0 from 

[30] Figure 4 shows, as solid curves, the quasi-linear 
diffusion coefficients after carrying out the bounce averages 
of the local results illustrated in Figure 1. The sum of 
contributions from n = -\ and n = +\ are shown in the top 
row, and just n = 0 is shown in the bottom row. Also shown, 
as red squares, are the results of numerically averaging the 
diffusion coefficients for monochromatic waves, from 
Figures 2 and 3, weighted according to equation (24). It is 
apparent that, allowing for numerical accuracy, the com- 

100.0000 F 
Da0ao (day

-1) 

10.0000 r 

1.0000 r 

0.1000 r 

0.0100 r 

0.0010 r 

0.0001 . 

aj/n.q=o 05 
0.10 
0.15 
0.20 
025 
0 30 
0.35 
0.40 

15  30  45  60  75  90 

Figure 2. Equatorial pitch angle diffusion coefficient for 
1 MeV electrons interacting with monochromatic chorus 
waves at L = 4.5, treated as a coherent interaction. Results 
are shown for a fixed value of wave normal angle and sev- 
eral fixed values of frequency; the dashed line indicates 8 = 
8m = 0, uj = tjm = 035Qe (at the equator). Only the lowest 
harmonic (n = -1) term is shown. 
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Figure 3.   Same as Figure 2 but showing results for fixed 
frequency and several values of wave normal angle. 

putational evaluations verify the analytical result that the 
two formulations are the same. 

6.    Summary and Discussion 

[31] This paper has investigated the relationship between 
two   seemingly   different   formulations   of wave-particle 

interactions. Generalizing a previous study, it has been 
shown analytically that taking the narrowband limit of 
bounce-averaged, broadband quasi-linear diffusion coeffi- 
cients agTees exactly with the diffusive limit of coherent 
interactions with a monochromatic wave. Moreover, con- 
sidering the individual waves to be drawn from specified 
frequency and wavenormal angle distributions, and aver- 
aging diffusion coefficients accordingly, reproduces the full 
quasi-linear expressions. 

[32] It has been a puzzle why global simulations using 
quasi-linear theory [Li et al., 2007; Albert, 2009] are at least 
moderately successful in reproducing the observed effects of 
chorus waves, which upon close examination are discrete 
and coherent [Santolik et al., 2003]. Parameters used to 
model chorus waves as a population which are based on 
wave measurements with coarse time resolution [Meredith 
et al., 2003] should reflect the distribution of the underly- 
ing individual waves. As just shown, multiple interactions 
with this distribution of waves will be well described sta- 
tistically by the quasi-linear approach, as long as the indi- 
vidual waves are not large enough to induce nonlinear 
particle behavior [Cattell et al., 2008; Cully et al., 2008]. 

[33] It should be noted that in all cases, the wave para- 
meters (amplitude, frequency, wave normal angle) have been 
treated as constant during each individual wave-particle 
interaction. Although the quantities can vary significantly, 
indeed, frequency drift is a characteristic feature of chorus 
waves, the duration of an isolated interaction is brief in the 
diffusive regime. This would not apply to phase-trapped 
particles, which experience an extended resonant interaction 

Figure 4. Bounce-averaged quasi-linear diffusion coefficients (solid curves) and diffusion coefficients 
for coherent interactions with monochromatic waves, averaged over the same frequency and wave normal 
angle distributions (red squares), (top) The contributions from n = ±1 and (bottom) the contributions of 
just n = 0 are shown. As predicted analytically, calculations using the two approaches agree. 
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time, and which are believed to be key for the self-consistent, 
nonlinear growth of chorus waves. 

[34] For computing diffusion coefficients, there is no 
apparent major advantage to either viewpoint; the same 
number of integrals must be done either way. However, the 
coherent interaction approach has the large benefit of indi- 
cating when the diffusion approach becomes invalid, and 
nonlinear effects must be considered. Estimates of these 
effects have the form of velocity space advection, and may 
be included in a combined diffusion-advection equation 
[Albert, 1993, 2000, 2002]. The refinement of these esti- 
mates, and their use in global simulations, is the subject of 
ongoing work. 

which corresponds to equation A8 of Lyons, and which 
satisfies equation (Al) above for any choice of B2^) and 
gjfi). In the notation of equation (4), 

|Bk|2     4TTV 
BtmcGlGl< (A7) 

which is used in section 4. 
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hicles Directorate of the Air Force Research Laboratory and by UCLA by 
NSF grant ATM-0903802. 
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Appendix A: Parameterization of the Wave 
Distribution 

[35] The Fourier transform of the squared wave magnetic 
field is 

s2      - f wave / 
|Bk]2   d3k 

v    (2*)3 (Al) 

where 

=   =• /    dui I   d8 k J, 
(2n)2 Jo Jo 

for any cold plasma mode. 

J = 
d(uj.8) 

•J1 sin# r, 

(A2) 

(A3) 

and T(u;, 0) is (j. \fi + u>{dfj./duj)\ as in equation (4). 
[36] Lyons [1974b] explicitly assumed that the wave dis- 

tribution was independent of both 4>k and the sign of k\\, so 
that the integrals could be restricted to 0 < k^ < oc or 0 < 6 < 
nil, with an additional factor of 2. However, to connect to 
single-wave results, it is more natural not to assume sym- 
metry with respect to ±k\, and to take 0 integrals from 0 to jr. 
Then 

B2     = • 
(27T) j;r¥- jdujde. 

Following Lyons, we now write 

£.« =   (^ B2(uj)dcj 
,/o 

and also factor B2{ui) out of |Bk'2/K. This leads to 

|Bt|
2        4;rV _, B2{ui) 

(A4) 

(A5) 

4rrV   . 
ur      wavc 

/ B2Lj)du 

gM 

Ig^Y(u^) sin S'd9' 
(A6) 
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